Longest common substring using rolling hash approach

Do not miss this exclusive book on Binary Tree Problems. Get it now for free.

Reading time: 30 minutes | Coding time: 15 minutes

A substring is a contiguous sequence of characters within a string.For example,open is a substring of opengenus. Here,we have presented an approach to find the longest common substring in two strings using rolling hash. Rolling hash is used to prevent rehashing the whole string while calculating hash values of the substrings of a given string. In rolling hash,the new hash value is rapidly calculated given only the old hash value.Using it, two strings can be compared in constant time.

To understand the basic approaches to solve this problem, go through this article Longest Common Substring in two strings by Ashutosh Singh.

With the rolling hash technique, we will be able to solve this problem in O(N * log(N)^2) time and O(N) space.

Examples

str1 = opengenus
str2 = genius
Output = gen
The longest common substring of str1(opengenus) and str2(genius) is "gen" of length 3.

str1 = carpenter
str2 = sharpener
Output = arpen
The longest common substring of str1(carpenter) and str2(sharpener) is "arpen" of length 5.

Implementation

Firstly we need to calculate polynomial hashes on prefixes of strings A and B. Suppose that we have found the largest common substring of length len, starting with the position pos of any of the strings. Then the common substring is any substring of length ** len-1, len-2, ..., 1, ** starting with pos, but len + 1 will be not a common substring. We see that the binary search conditions are satisfied.

Pseudo Code for binary search:-

 l = 0 , r = min(s1.length(),s2.length())
while (l <= r){
	mid = l + (r-l)/2
	if(p(s1, s2, mid)) // p(s1,s2,len) checks for common substring 
		l = mid + 1
	else
		r = mid - 1
}
return l-1

At each iteration of the search, we add all hashes of the line mid of the string A to the vector, sort it, and then go through the hash of the substrings with length mid of the string B and search them in sorted array of hashes substrings of string A with length mid.

To find the hash of a substring,we find the hash of previous substring and calculate the hash of next substring.

Pseudo Code for rolling hash

// Part of OpenGenus IQ
// computes the hash value of the input string s
long long compute_hash(string s) {
    const int p = 31;   // base 
    const int m = 1e9 + 9; // large prime number
    long long hash_value = 0;
    long long p_pow = 1;
    for (char c : s) {
        hash_value = (hash_value + (c - 'a' + 1) * p_pow) % m;
        p_pow = (p_pow * p) % m;  
    }
    return hash_value;
}
// finds the hash value of next substring given nxt as the ending character 
// and the previous substring prev 
long long rolling_hash(string prev,char nxt)
{
   const int p = 31;
   const int m = 1e9 + 9;
   long long H=compute_hash(prev);
   long long Hnxt=( ( H - pow(prev[0],prev.length()-1) ) * p + (int)nxt ) % m;
   return Hnxt;
}

You can refer to this article to learn more about rolling hashes.

Let's consider an example, we want to find the longest commmon substring between the strings iit and iiitian.Applying the rolling hash formula,the hash value of string iit would be 7955.So pref1[3]=7955 which refers to the prefix hash upto 3 letters from start of the string iit .

When we find the hash values of all 3-letters substrings of iiitian, the hash value of the first substring iii would be 7944,so pref2[3]=7944 when our considered string starts from first letter and that when the string under consideration starts from second letter would be the hash corresponding to the next substring iit ,i.e, 7955.Therefore pref2[3]=7955.We can easily find out using binary search in the pref2[] array during the second iteration we get equal hash to that of the considered hash of string iit which is of maximum length ,i.e., equal to the length of smallest substring(3 in this case), therefore iit would be the required answer.

Following is the complete implementation in cpp using structure storing the prefixes of the strings:-

#include <stdio.h>
#include <cassert>
#include <algorithm>
#include <vector>
#include <random>
#include <chrono>
#include <string>

typedef unsigned long long ull;

// Generate random base in (before, after) open interval:
int gen_base(const int before, const int after) {
    auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
    std::mt19937 mt_rand(seed);
    int base = std::uniform_int_distribution<int>(before+1, after)(mt_rand);
    return base % 2 == 0 ? base-1 : base;
}

struct RollingHash {
    // -------- Static variables --------
    static const int mod = (int)1e9+123; // prime mod of polynomial hashing
    static std::vector<int> pow1;        // powers of base modulo mod
    static std::vector<ull> pow2;        // powers of base modulo 2^64
    static int base;                     // base (point of hashing)
    
    // --------- Static functons --------
    static inline int diff(int a, int b) { 
    	// Diff between `a` and `b` modulo mod (0 <= a < mod, 0 <= b < mod)
        return (a -= b) < 0 ? a + mod : a;
    }
    
    // -------------- Variables of class -------------
    std::vector<int> pref1; // Hash on prefix modulo mod
    std::vector<ull> pref2; // Hash on prefix modulo 2^64
    
    // Cunstructor from string:
    RollingHash(const std::string& s)
        : pref1(s.size()+1u, 0)
        , pref2(s.size()+1u, 0)
    {
        assert(base < mod);
        const int n = s.size(); // Firstly calculated needed power of base:
        while ((int)pow1.size() <= n) {
            pow1.push_back(1LL * pow1.back() * base % mod);
            pow2.push_back(pow2.back() * base);
        }
        for (int i = 0; i < n; ++i) { // Fill arrays with polynomial hashes on prefix
            assert(base > s[i]);
            pref1[i+1] = (pref1[i] + 1LL * s[i] * pow1[i]) % mod;
            pref2[i+1] = pref2[i] + s[i] * pow2[i];
        }
    }
    
    // Rollingnomial hash of subsequence [pos, pos+len)
    // If mxPow != 0, value automatically multiply on base in needed power. Finally base ^ mxPow
    inline std::pair<int, ull> operator()(const int pos, const int len, const int mxPow = 0) const {
        int hash1 = pref1[pos+len] - pref1[pos];
        ull hash2 = pref2[pos+len] - pref2[pos];
        if (hash1 < 0) hash1 += mod;
        if (mxPow != 0) {
            hash1 = 1LL * hash1 * pow1[mxPow-(pos+len-1)] % mod;
            hash2 *= pow2[mxPow-(pos+len-1)];
        }
        return std::make_pair(hash1, hash2);
    }
};

// Init static variables of RollingHash class:
int RollingHash::base((int)1e9+7);    
std::vector<int> RollingHash::pow1{1};
std::vector<ull> RollingHash::pow2{1};

int main() {
    // Input:
    int n;
    scanf("%d", &n);
    char buf[1+100000];
    scanf("%100000s", buf);
    std::string a(buf);
    scanf("%100000s", buf);
    std::string b(buf);
    
    // Calculate max neede power of base:
    const int mxPow = std::max((int)a.size(), (int)b.size());
    
    // Gen random base of hashing:
    RollingHash::base = gen_base(256, RollingHash::mod);
    
    // Create hashing objects from strings:
    RollingHash hash_a(a), hash_b(b);
    
    // Binary search by length of same subsequence:
    int pos = -1, low = 0, high = std::min(a.size(), b.size())+1;
    while (high - low > 1) {
        int mid = (low + high) / 2;
        std::vector<std::pair<int,ull>> hashes;
        for (int i = 0; i + mid <= n; ++i) {
            hashes.push_back(hash_a(i,mid,mxPow));
        }
        std::sort(hashes.begin(), hashes.end());
        int p = -1;
        for (int i = 0; i + mid <= n; ++i) {
            if (std::binary_search(hashes.begin(), hashes.end(), hash_b(i, mid, mxPow))) {
                p = i;
                break;
            }
        }
        if (p >= 0) {
            low = mid;
            pos = p;
        } else {
            high = mid;
        }
    }
    assert(pos >= 0);
    // Output answer:
    printf("%s", b.substr(pos, low).c_str());
    
    return 0;
}

Complexity

  • Worst case time complexity: O(n*log(n)^2)
  • Average case time complexity: O(n*log(n)^2)
  • Best case time complexity: O(n*log(n)^2)
  • Space complexity: O(n)

Sorting the hashes require O(nlog(n)) time and binary search requires another O(log(n) time,therefore, the total time complexity of finding the longest common substring using rolling hash approach would be O(n * log(n)^2).Since the prefixes and hashes are to be stored in arrays/vectors, therefore, space complexity would be O(n).

Further reading

With this, you will have a strong idea of the problem. Enjoy.

Sign up for FREE 3 months of Amazon Music. YOU MUST NOT MISS.