×
Home Discussions Write at Opengenus IQ
×
  • DSA Cheatsheet
  • HOME
  • Track your progress
  • Deep Learning (FREE)
  • Join our Internship 🎓
  • RANDOM
  • One Liner

euclidean distance

A collection of 3 posts

similarity measurement

Minkowski distance [Explained]

Minkowski distance is a distance/ similarity measurement between two points in the normed vector space (N dimensional real space) and is a generalization of the Euclidean distance and the Manhattan distance. See the applications of Minkowshi distance and its visualization using an unit circle.

OpenGenus Tech Review Team OpenGenus Tech Review Team
similarity measurement

Euclidean vs Manhattan vs Chebyshev Distance

Euclidean distance, Manhattan distance and Chebyshev distance are all distance metrics which compute a number based on two data points. All the three metrics are useful in various use cases and differ in some important aspects such as computation and real life usage.

OpenGenus Tech Review Team OpenGenus Tech Review Team
similarity measurement

Euclidean distance (L2 norm)

Euclidean distance is the shortest distance between two points in an N dimensional space also known as Euclidean space. It is used as a common metric to measure the similarity between two data points and used in various fields such as geometry, data mining, deep learning and others.

OpenGenus Tech Review Team OpenGenus Tech Review Team
OpenGenus IQ © 2025 All rights reserved â„¢
Contact - Email: team@opengenus.org
Primary Address: JR Shinjuku Miraina Tower, Tokyo, Shinjuku 160-0022, JP
Office #2: Commercial Complex D4, Delhi, Delhi 110017, IN
Top Posts LinkedIn Twitter
Android App
Apply for Internship