×
Home Discussions Write at Opengenus IQ
×
  • DSA Cheatsheet
  • HOME
  • Track your progress
  • Deep Learning (FREE)
  • Join our Internship 🎓
  • RANDOM
  • One Liner

manhattan distance

A collection of 3 posts

similarity measurement

Minkowski distance [Explained]

Minkowski distance is a distance/ similarity measurement between two points in the normed vector space (N dimensional real space) and is a generalization of the Euclidean distance and the Manhattan distance. See the applications of Minkowshi distance and its visualization using an unit circle.

OpenGenus Tech Review Team OpenGenus Tech Review Team
similarity measurement

Euclidean vs Manhattan vs Chebyshev Distance

Euclidean distance, Manhattan distance and Chebyshev distance are all distance metrics which compute a number based on two data points. All the three metrics are useful in various use cases and differ in some important aspects such as computation and real life usage.

OpenGenus Tech Review Team OpenGenus Tech Review Team
similarity measurement

Manhattan distance [Explained]

Manhattan distance (L1 norm) is a distance metric between two points in a N dimensional vector space. It is the sum of the lengths of the projections of the line segment between the points onto the coordinate axes. It was introduced by Hermann Minkowski. It is used in regression analysis

OpenGenus Tech Review Team OpenGenus Tech Review Team
OpenGenus IQ © 2025 All rights reserved â„¢
Contact - Email: team@opengenus.org
Primary Address: JR Shinjuku Miraina Tower, Tokyo, Shinjuku 160-0022, JP
Office #2: Commercial Complex D4, Delhi, Delhi 110017, IN
Top Posts LinkedIn Twitter
Android App
Apply for Internship